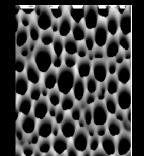

# Nayudamma Memorial Lecture @ CLRI

# Delights of Doing Research: Some Personal Lessons from Translational Sciences


### **Ashutosh Sharma**

### Department of Science and Technology Government of India

# Department of Chemical Engineering Indian Institute of Technology, Kanpur









### Research Themes Meso 3M: Mechanics, Materials and Manufacturing

- Nano-mechanics: Instabilities, self-organization and pattern formation
- > Micro/nano-fabrication and patterning of soft materials
- Textured Functional Interfaces: adhesive, wetting, optical.....
- Nanomaterials for health, environment & energy.....
- MEMS, NEMS, Microfluidics, Sensors......
- > Micro/nano fibers and devices: Carbon-MEMS.
- Electrospinning of functional materials....

# Some ABCs to ponder:

(A) Moving away from incremental: High Risk/High gain!

✓ (B) The power of lateral thinking, creativity and even common sense in solving scientific problems (do NOT follow the leader!).

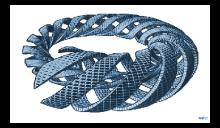
(C) Translating scientific ideas/research to tangible technology for the societal needs.

(D) Innovation: Closing the sustainable knowledge circle.....

- 1. Scientific Common Sense & Creativity: Connecting dots....
- 2. Problem-centric vs. Toolbox-centric Approaches to Research

<u>Multidimensionality of Key S &T sectors:</u> Energy, Water, Health, Environment, Food, Manufacturing, Information, Connectivity, Sustainable Habitats, Security......

3. Technology-centric vs. People-centric Worldviews


*"In the sky, there is no distinction of east and west; people create distinctions out of their own minds and then believe them to be true." -- Buddha* 

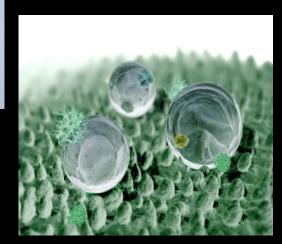
Self-organization: 1 micron-100 micron (Physics) Self-organized Pattern Formation in Ultrathin (< 100 nm) Unstable Polymer Liquid Films What limits it?

What is the use?

Large Area, Rapid Inexpensive Micro or Nano Patterning Of Polymer Arrays: Lenses, Sensors, devices...



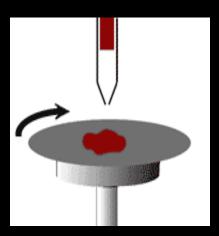







Nature-inspired Science: Micro/Nano Textured Functional Coatings for Control of Wetting, Adhesion and Color



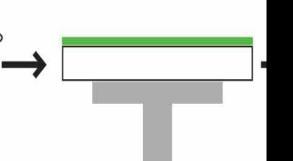

Structural colors: Photonic Crystals



Lotus effect: Self-clean water repellent surfaces

Reversible Bio-Adhesion: nano- velcro; Geckel glue

### Self-organized Dewetting of Thin (< 100 nm) Polymer Films

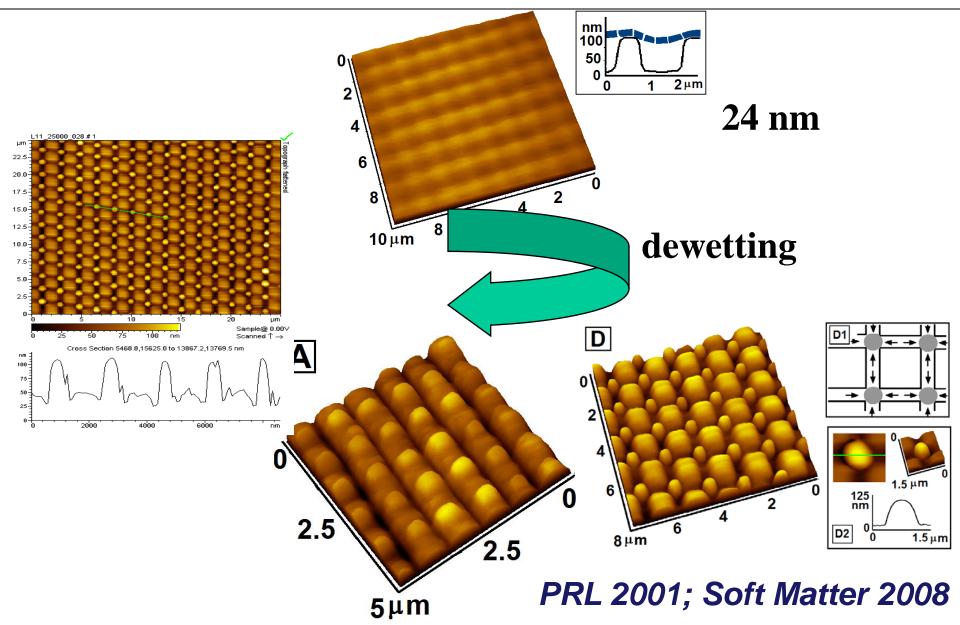



**Spin-coating of polymer solution** 

Heating above T<sub>G</sub> or Exposure to solvent vapor

 $\lambda^2 \sim N^{-1} \sim \gamma / \phi \sim$  (van der Waals) H<sup>4</sup>






# (Quick) ABC of Thin Film Wetting Why is it scientifically interesting?

A workhorse for studies of: Interfacial Science, Confinement, Intersurface forces, Micro-rheology, Surface instabilities, Self-organization, Pattern formation, Nucleation, Spinodal processes, adhesion,.....

Wetting is not just Science at Surfaces but goes much Deeper !

### Ordered Structures by Dewetting on Physico-chemically Patterned Templates in Solvent Vapor or Heating



### Problems ??

- 1. Ultrathin film to be heated above Tg to allow mobility and then cooled.....(residual stresses)
- 2. Lateral feature size > several microns owing to:
- A. Weak van der Waals destabilizing force
- **B.** High surface tension stabilizing force
- **C.** Low mobility; slow kinetics
- **3.** Patterns with arbitrary, complex geometries and sharp corners are difficult to create by self-organization

# Four Problems, One Solution !!

### Creativity is in the Beginning. Think Physical !

Integration of the equation of motion of the upper layer  $(\mu_2 u_{2x} = \int P_{2x} dz)$  leads to

$$\mu_2 u_{2z} = P_{2x} z + C_1 \tag{iii}$$

where  $P_2$  is constant in the z direction. At  $z = h_2$ ,  $\mu_2 u_{2z} = 0$ . Therefore, from eq iii

$$C_1 = -P_{2x}h_2$$

Thus, eq iii can be modified to

$$\mu_2 u_{2z} = P_{2x} z - P_{2x} h_2$$
 (iv)

Integration of eq iv  $[\mu_2 u_2 = f(P_{2x}z - P_{2x}h_2)dz]$  leads to

$$\mu_2 u_2 = P_{2x} z^2 / 2 - P_{2x} h_2 z + C_2 \tag{v}$$

At  $z = h_1$ ,  $u_2 = u_1$ . Therefore, from eq v

$$C_2 = \mu_2(u_1)_{h_1} - P_{2x}(h_1^{-2}/2) + P_{2x}h_2h_1 \qquad (\rm vi)$$

$$\mu_2 u_2 = P_{2x}[(z^2 - h_1^2)/2] - P_{2x}h_2(z - h_1) + \mu_2(u_1)_{h_1}$$
(vii)

Integration of the equation of motion of the lower layer  $[\mu_1 \mu_{1z} = \int P_{1x} dz]$  leads to

$$\mu_1 u_{1z} = P_{1x} z + C_3$$
 (viii)

where  $P_1$  is constant in the z direction.

At  $z = h_1$ ,  $\mu_2 u_{2z} = \mu_1 u_{1z}$ . Therefore, eqs viii and iv simplify to

$$\mu_1 u_{1z} = P_{1x} z + (P_{2x} - P_{1x})h_1 - P_{2x}h_2$$
 (ix)

Integration of eq ix  $\{\mu_1u_1 = f[P_{1x}z + (P_{2x} - P_{1x})h_1 - P_{2x}h_2] dz\}$  leads to

$$\mu_1 u_1 = P_{1x}(z^2/2) + (P_{2x} - P_{1x})h_1 z - P_{2x}h_2 z + C_4 \quad (\mathbf{x})$$

At z = 0,  $u_1 = 0$ . Therefore, eq x leads to  $C_4 = 0$ . Consequently

$$\mu_1 u_1 = P_{1x}(z^2/2) + (P_{2x} - P_{1x})h_1 z - P_{2x}h_2 z \quad ({\rm xi})$$

Differentiation of eq xi with respect to x leads to

$$\mu_1 u_{1x} = P_{1xx}(z^2/2) + [(P_{2x} - P_{1x})h_1]_x z - (P_{2x}h_2)_x z \quad (xii)$$

The equation of continuity  $(u_{1x} + w_{1z} = 0)$  and eq xii simplify to

$$-\mu_1 w_{1z} = P_{1xx}(z^2/2) + [(P_{2x} - P_{1x})h_1]_x z - (P_{2x}h_2)_x z$$
(xiii)

Integrating eq xiii  $(-\mu_1 w_{1z} = f\{P_{1xx}(z^2/2) + [(P_{2x} - P_{1x})h_1]_x z - (P_{2x}h_2)_x z\} dz]$  gives

$$\begin{split} -\mu_1 w_1 = P_{1xx}(z^3/6) + [(P_{2x}-P_{1x})h_1]_x(z^2/2) - \\ & (P_{2x}h_2)_x(z^2/2) + C_5 \ (\text{xiv}) \end{split}$$

At z = 0,  $w_1 = 0$ . Therefore, eq xiv leads to  $C_5 = 0$  and

$$-\mu_1 w_1 = P_{1xx}(z^3/6) + [(P_{2x} - P_{1x})h_1]_x(z^2/2) - (P_{2x}h_2)_x(z^2/2) \quad (xv)$$

Ind. Eng. Chem. Res., Vol. 44, No. 5, 2005 1269

At height  $h_1$ , eqs xi and xv reduce to

$$(u_1)_{h_1} = (1/\mu_1)[P_{1x}(h_1^2/2) + (P_{2x} - P_{1x})h_1^2 - P_{2x}h_2h_1]$$
(xvi)

$$\begin{split} (w_1)_{h1} &= (-1/\mu_1)\{P_{1xx}(h_1^{3}\!/\!6) + \\ & [(P_{2x}-P_{1x})h_1]_x(h_1^{2}\!/\!2) - (P_{2x}h_2)_x(h_1^{2}\!/\!2)\} \ \ (\text{xvii}) \end{split}$$

Substituting eqs xvi and xvii into eq i gives the final form of the kinematic condition for the liquid-liquid interface

$$\frac{\partial h_1}{\partial t} - \frac{1}{3\mu_1} \frac{\partial}{\partial x} \left( h_1^3 \frac{\partial P_1}{\partial x} \right) + \frac{1}{2\mu_1} \frac{\partial}{\partial x} \left[ h_1^2 (h_1 - h_2) \frac{\partial P_2}{\partial x} \right] = 0$$
(xviii)

Equation vii can be written as follows

$$\begin{split} \mu_2 u_2 &= P_{2x}[(z^2-h_1^2)/2] - P_{2x}h_2(z-h_1) + \\ & (\mu_2/\mu_1)[P_{1x}(h_1^{-2}/2) + (P_{2x}-P_{1x})h_1^{-2} - P_{2x}h_1h_2] \ \ (\text{xix}) \end{split}$$

Differentiating eq xix with respect to x gives

$$\begin{split} u_{2x} &= (1/\!\mu_2) [P_{2xx}(z^2/2) - (P_{2x}h_1^{2/2})_x - \\ & (P_{2x}h_2)_x z + (P_{2x}h_2h_1)_x] + (1/\!\mu_1) [(P_{2x}h_1^{2})_x - \\ & (P_{2x}h_2h_1)_x - (P_{1x}h_1^{2/2})_x] \end{split}$$

Replacing  $u_{2x}$  from the equation of continuity  $u_{2x} + w_{2z} = 0$  and then integrating eq xx leads to the following expression

$$\begin{split} -w_2 &= (1/\mu_2) [P_{2xx}(z^3/6) - (P_{2x}h_1^2/2)_x z - \\ & (P_{2x}h_2)_x(z^2/2) + (P_{2x}h_2h_1)_x z] + (1/\mu_1) [(P_{2x}h_1^2)_x - \\ & (P_{2x}h_2h_1)_x - (P_{1x}h_1^2/2)_x] z + C_6 \ (\text{xxi}) \end{split}$$

At  $z = h_1, w_2 = w_1$ . Therefore, eq xxi gives the expression for constant  $C_6$ 

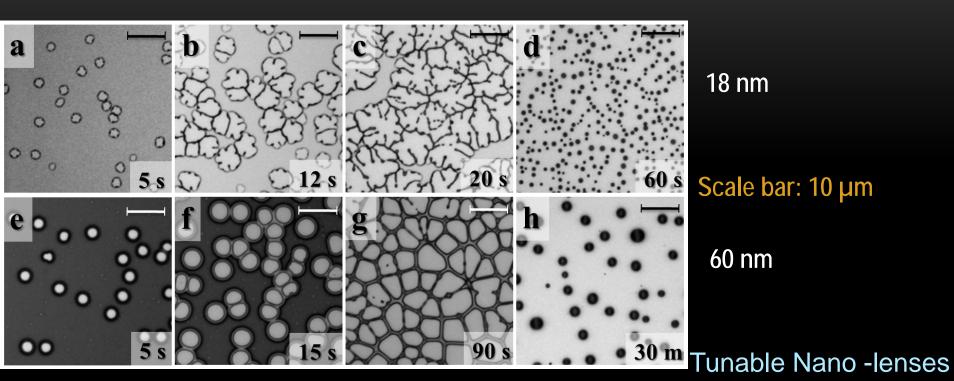
$$\begin{split} C_6 &= (1/\mu_1)\{P_{1xx}(h_1^{-3}/6) + P_{2xx}[(h_2h_1^{-2}/2) - (h_1^{-3}/2)] + \\ & P_{2x}h_{1x}(h_2h_1 - 3h_1^{-2}/2) + P_{1x}h_{1x}(h_1^{-2}/2) + \\ P_{2x}h_{2x}(h_1^{-2}/2)\} - (1/\mu_2)\{P_{2xx}[(-h_1^{-3}/3) + (h_2h_1^{-2}/2)] + \\ & P_{2x}h_{1x}(h_1h_2 - h_1^{-2}) + P_{2x}h_{2x}(h_1^{-2}/2)\} \quad (\text{xxii}) \end{split}$$

Equation xix is evaluated at height  $h_2$ 

$$\begin{split} (u_2)_{h_2} &= (1/\mu_2)\{P_{2x}[(h_2^{-2} - h_1^{-2})/2] - P_{2x}h_2(h_2 - h_1)\} + \\ &\quad (1/\mu_1)[-P_{1x}(h_1^{-2}/2) + P_{2x}h_1^{-2} - P_{2x}h_1h_2] \ \ (\text{xxiii}) \end{split}$$

Equations xxii and xxi lead to the following expression for  $w_1$  at height  $h_2$ 

$$\begin{split} -(w_2)_{h2} &= (1/\mu_2)\{(P_{2xx}/3)(h_1 - h_2)^3 + \\ P_{2x}h_{1x}(h_1 - h_2)^2 + P_{2x}h_{2x}[h_1h_2 - (h_1^2/2) - (h_2^2/2)]\} + \\ &\quad (1/\mu_1)\{P_{2xx}[(-h_1^{-3}/2) + (3h_1^2h_2/2) - h_2^2h_1] + \\ P_{1xx}[(h_1^{-3}/6) - (h_1^{-2}h_2/2)] + P_{2x}h_{2x}[(h_1^{-2}/2) - h_1h_2] + \\ &\quad P_{2x}h_{1x}(3h_1h_2 - h_2^{-2} - 3h_1^{-2}/2) + \\ &\quad P_{1x}h_{1x}[(h_1^{-2}/2) - h_1h_2]\} \quad (xxiv) \end{split}$$

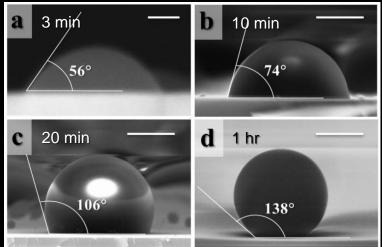

Substituting eqs xxiii and xxiv into eq ii gives the final

Many Problems, One Intuitive Solution !!

Dewetting under a Magic Mix of liquids (Mixture of a solvent and a non-solvent): [MEK, Water, and Acetone (15:7:3)]

- a) Polymer cannot dissolve in the mixture
- b) Glass transition goes below room temperature; liquid polymer at room temp
- c) Interfacial tension becomes very small
- d) Destabilizing forces may get stronger
- e) Residual stresses get weaker

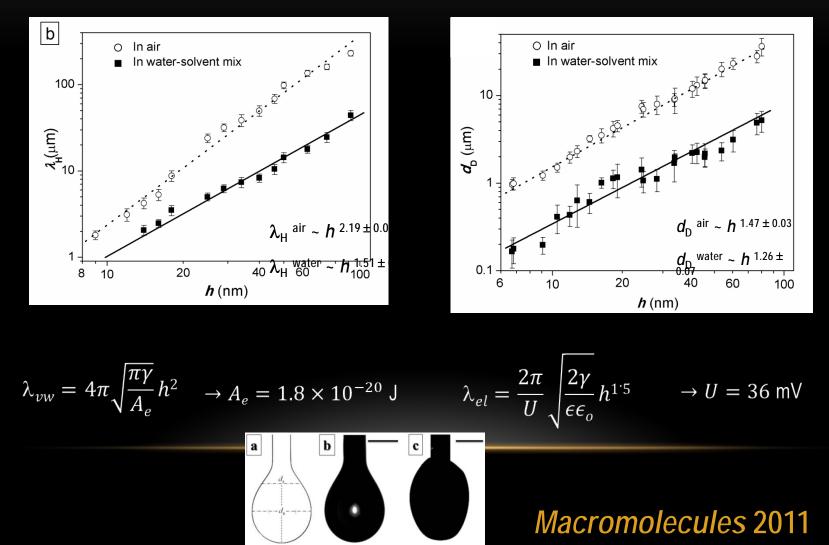
### Pushing the Limits of Self-organization Down to sub- 100 nm




Dewetting time in air ~ 10 minutes (18 nm), 6 hours (60 nm).

FASTER & FINER DEWETTING UNDER WATER-ORGANIC MIX

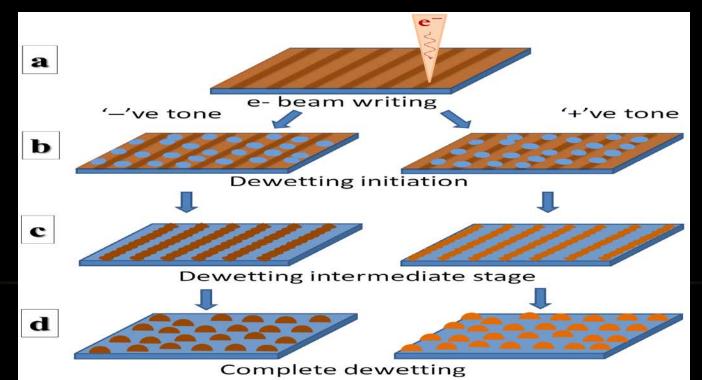
Water, MEK and acetone (15:7:3).


Advanced MaterialsScale bar: 500 nm2010



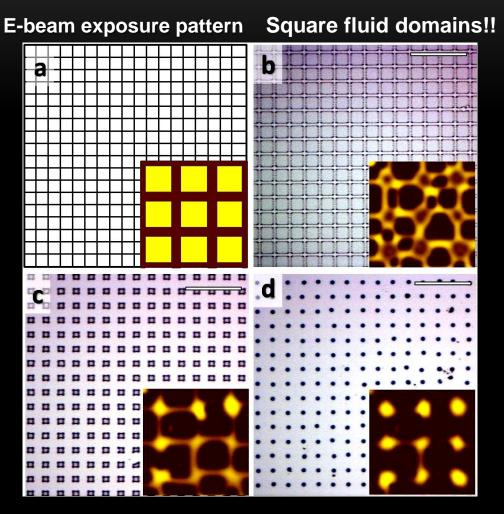
### ENHANCED DEWETTING: PATTERN LENGTH SCALES




Surface tension decreases from 25.8 to 0.55 mN/m van der Waals force replaced by stronger electrostatic attraction; U ~ 36 mV



# Soft Patterning

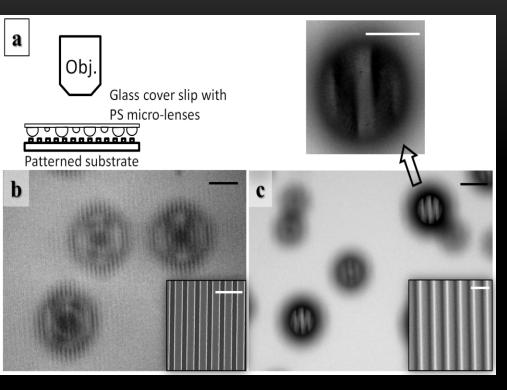

## **E-BEAM ASSISTED ORDERED DEWETTING**

- Short e-beam exposure increases (decreases) the effective viscosity of negative (positive) tone e-beam resist.
   PS: negative tone (increased viscosity); PMMA : positive tone (decreased viscosity)
- Dewetting initiates and grow faster in the low viscous regions and leads to the ordered array of Nano-Ienses.



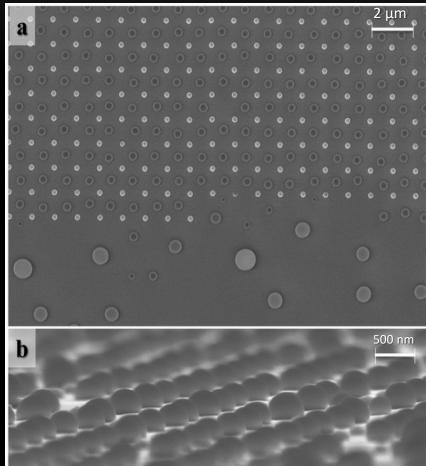
### **EVOLUTION OF SQUARE GRID PATTERN: BEST FIDELITY**

- 17 nm PMMA film
- Single pixel square grid at 6 µm periodicity, dwell time of 10 kV e-beam is 500 ns.
- Viscosity ratio in the exposed and unexposed regions: 0.01
- The inset images show simulated spatiotemporal evolution of instability




### Square fluid domains!! Rounding off.....

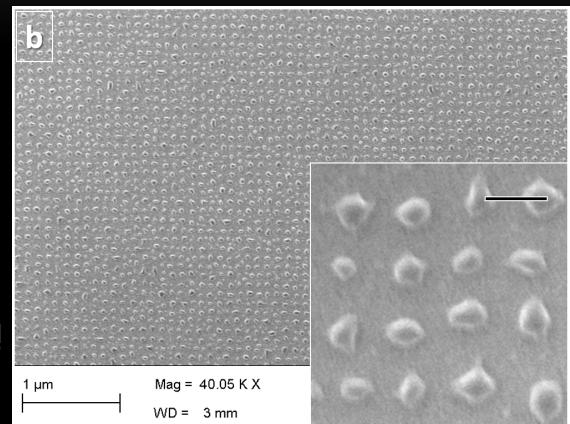
Macromolecules 2015


#### Scale bar: 20 µm

### **SUB-MICROMETER LENS ARRAYS BY DEWETTING**



700 nm line spacing 20 nm thick PS film beam dose ~ 100 μC/cm<sup>2</sup>


### Template/e-beam assisted



### Advanced Materials 2010; Macromolecules 2011; Soft Matter 2011

### LIMITS OF SELF-ORGANIZATION; WHERE PHYSICAL SELF-ORGANIZATION MEETS CHEMICAL SELF-ASSEMBLY : SUB-40 NM ARRAY OF NANO-DOMAINS/LENSES

- ~35 nm size nanodots in a 100 nm square array.
- Fabricated by the dewetting of 5.2 nm thick PS film.
- ~ 10 molecules/dot !

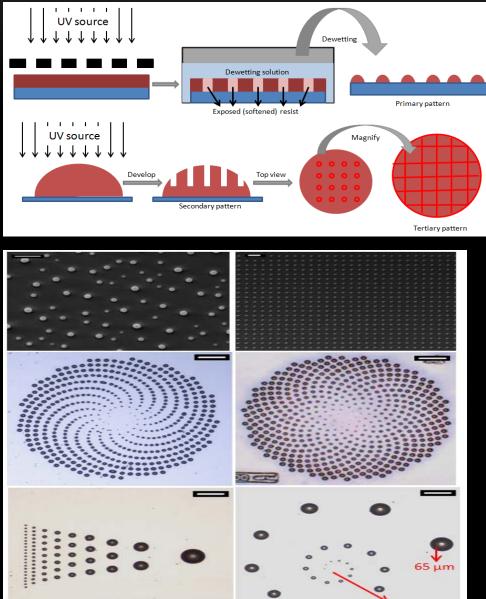


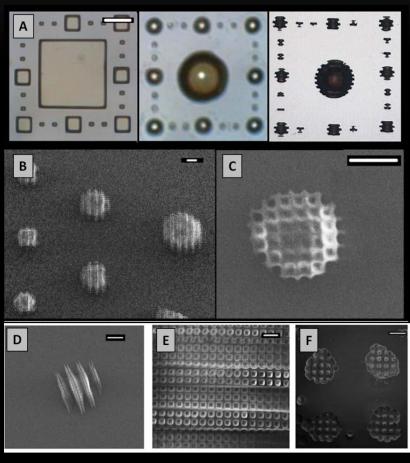
Scale bar: 100 nm



### Micro/Nano Lens Arrays

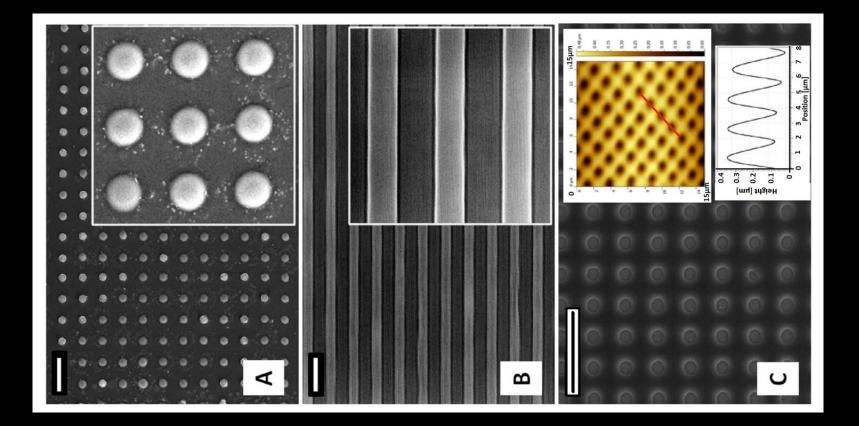
- ✓ Opto-electronics, CCD arrays, digital projectors, photovoltaics.....
- ✓ Signal enhancement (Raman spectroscopy?)
- ✓ Compound eye (fast motion detection; low light....)
- ✓ Near-field detection of low intensity optical signals.
- Compound mask for photolithography/selective deposition
- Micro-lens Projection lithography




<u>What do we look in a fabrication technique?</u> Portability, Portability, Portability (across).....

- A. Materials (functional polymers; chalcogenides; polymer nanocomposites; photoresists; .....)
- B. Synergy with common top-down tools; Methods of pre-patterns (e-beam; UV; laser; photo-patterning; .....)
- C. Geometries (complex; hierarchical, three dimensional; fractal....)


# Geometries: Hierarchical, three dimensional microstructures by Photoresist Dewetting and Photopatterning





### 10 µm bar

### **Functional Materials:** Amorphous Chalcogenide Arsenic Selenide (As<sub>2</sub>Se<sub>3</sub>) Micro Lenses and Gratings for IR Optics

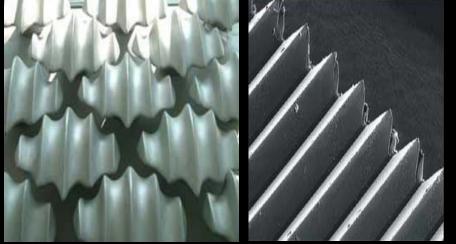


Random Thoughts on the Road to Obvious Strike again! When a distinguished but elderly scientist states that something is possible, he is almost certainly right. When he states that something is impossible, he is very probably wrong.

□ The only way of discovering the limits of the possible is to venture a little way past them into the impossible.

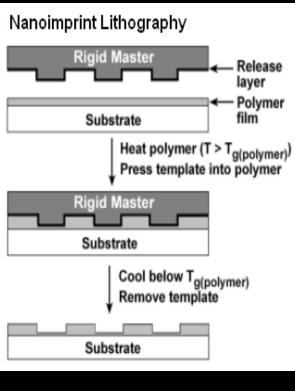
"Believe nothing, no matter where you read it or who said it, no matter if I have said it, unless it agrees with your own reason and your own common sense...."---Buddha




## Where and How we focus? It really matters !!

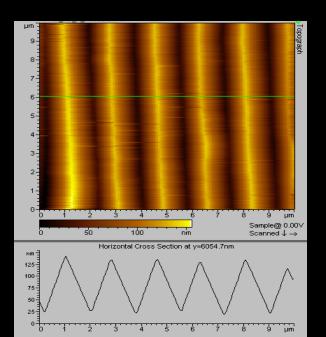
 Seeing is believing, yes, but what is seeing ?
 [Story of STM, AFM: Gerd Binnig and Heinrich Rohrer at IBM Zurich in 1981; the Nobel prize in physics in 1986.]

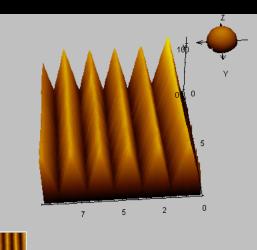
2. What we retain is good, but what we discard may be far more important !!
[Story of graphene—single layer of C atoms: Andre Geim & Konstantin Novoselov ; the Nobel prize in physics in 2010]


# Serendipity does really work,

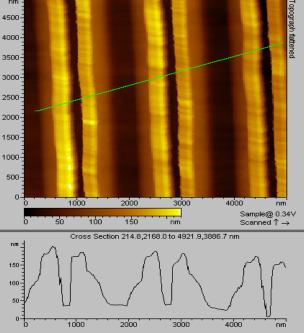
# If we let it !

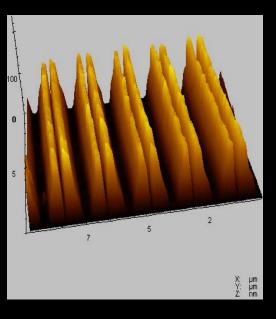



anti-stick, anti-fouling coatings on shark-skin

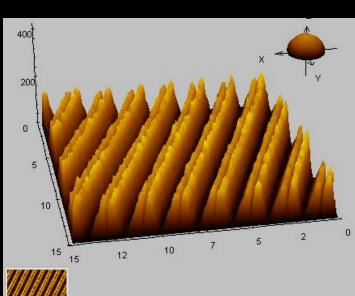

# Case Study: Polymeric NANO-structures by Self-organized Splitting of MICRO-structures







## **PMMA Microstructure Fabrication:** Capillary Flow Lithography plus 30 hours of annealing in vacuum at 160 C






# Serendipity Can Really Help, if You Let it!! Array of Nano-channels: Stress Induced Splitting of Microstructures





### Large Area (1 cm) arrays of Nano-channels, ~ 100 nm wide



µm µm nm Some Random Thoughts on the Road to Obvious!

- ✓ Education does NOT equal C(o)M(u)E(x)G(r)D(e).
- Education is not the CONTENT but the CAPACITY to learn and apply..
- ✓ Peer pressure !!
- Question and ponder!
- ✓ About INTERVIEWS ☺
- ✓ Running into a wall syndrome...(lateral think)...





# **General New Directions in 2015**

- Emphasis on Translational Sciences, Technology and Innovation around Societal Priorities....
- Connecting R&D and Innovation with Higher Education, Line Ministries and Industry....
- Technologies that keep PEOPLE at the Center...

# Some Cheers 2015 @

- Budget for scientific research increased
- India now No. 1 for offshore R&D investments
- ASTROSAT-India's first space astronomy mission
- India attains 6<sup>th</sup> position globally in science publications; 3<sup>rd</sup> position in Nanotechnology and Materials Science

### New Programs Joining Education, Research, Industry and Innovation Spaces

- Future Ready: National supercomputing Mission (with DeitY) Rs. 4500 Crores/7 years
- Meeting National Technological Priorities: IMPRINT (with MHRD). Rs. 1000 Crores/year
- Translation: Five Technology Research Centers for indigenous tech in biomedical device, nanotech, energy, water, waste.
- 400+ new technology startups
- Innovation: Technology Research Parks (with MHRD)

### New DST Programs on:

- Making it: Advanced Manufacturing
- **Environment:** Waste Management (plastic, e-waste, hospital..)
- **Empowering:** Point of Use Biomedical devices
- Digging Deeper: Science & Technology of Yoga and Meditation (SATYAM)
- Securing climatic and Energy Security: Clean Energy, Energy Storage and Smart Grids
- Moving away from Incremental: High Risk, High Gain
- Industry Connect: Ucchatar Aavishkar Yogana (with MHRD)

### Trailer 2016

### Inclusive, frugal and Relevant Innovation:

# Promoting Grass-roots Innovation Ecosystem in Rural Areas, Schools, I. T. I.s and Polytechnics

# "Minds at the margins of economy are not marginal minds"

"Children are not mere sinks of our sermons but can be generator of ideas and innovations" **Translational Research?** 

# Lost in Translation Syndrome !?

To boldly go where no man has gone before.

Korean Translation: 대담하게 아무 남자도 어디에 전에 가지 않은 것은지 가기 위하여

# **Re-translation:**

Makes bold and also anyone man not going a before in where in order to go.



### Acknowledgements

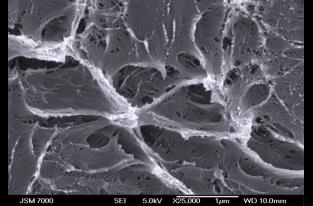
# Priyanka Sachan (IITK) Sandip Patil (IITK) Dipankar Bandyopadhyay (IITG) Rabibrata Mukherjee (IITKgp) Ankur Verma (IIT BHU) Animangsu Ghatak (IITK) **Rajesh Khanna (IITD)** Kajari Kargupta (Jadavpur)





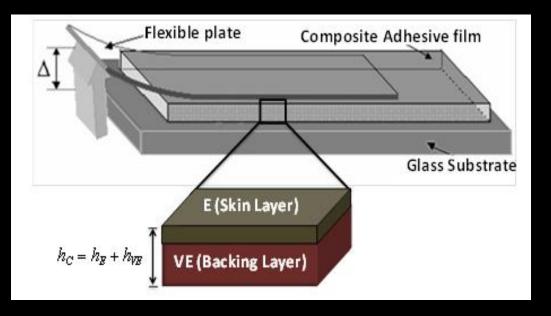
"Truth is stranger than fiction, because Fiction is obliged to ADHERE to possibilities; Truth isn't"---Mark Twain "...run up and down a tree in any way, even with the head downwards."-Aristotle 4<sup>th</sup> century B.C. *Historia Animalium*.

Search for a reusable, non-contaminating, high strength, self-cleaning, soft dry adhesive,,,,,,!!! (that also works in water)!!!!


### **Natural Adhesives**



### Case Study: Making <u>Re-usable</u> Pressure Sensitive Adhesives

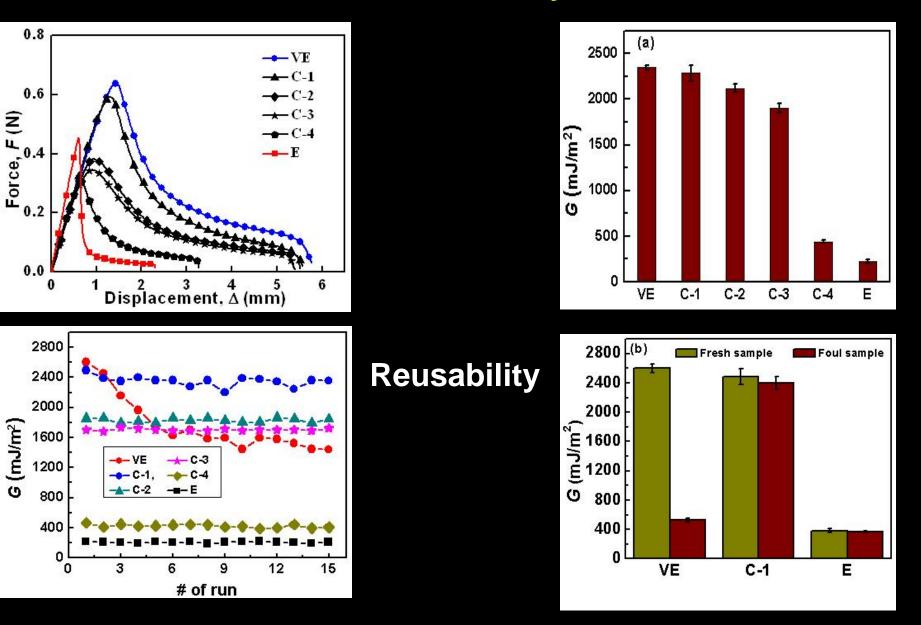

1. Elastic surfaces (more rigid cross-linked PDMS): Reusable, non-contaminating, but little strength because low contact area and no dissipation

2. Viscous-plastic-elastic & soft (real adhesives): Good contact, Higher adhesive strength (dissipation). But cohesive failure; contaminating/contaminated and thus not reusable



Visco-plastic dissipation when peeling

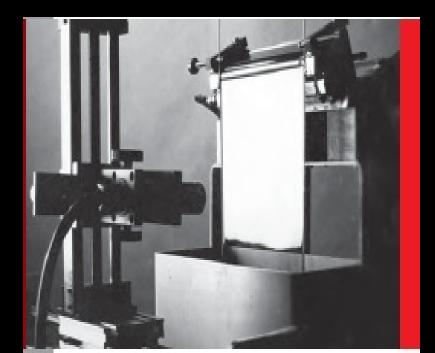
### Anatomy of a Green (Reusable) Adhesive: Multiple Function (strength & reusability) Composite Layer




✓ For skin layer < 100 nm, little change in elastic compliance; good contact on pressing; Detachment Strength is controlled by dissipation in viscous-elastic backing layer.

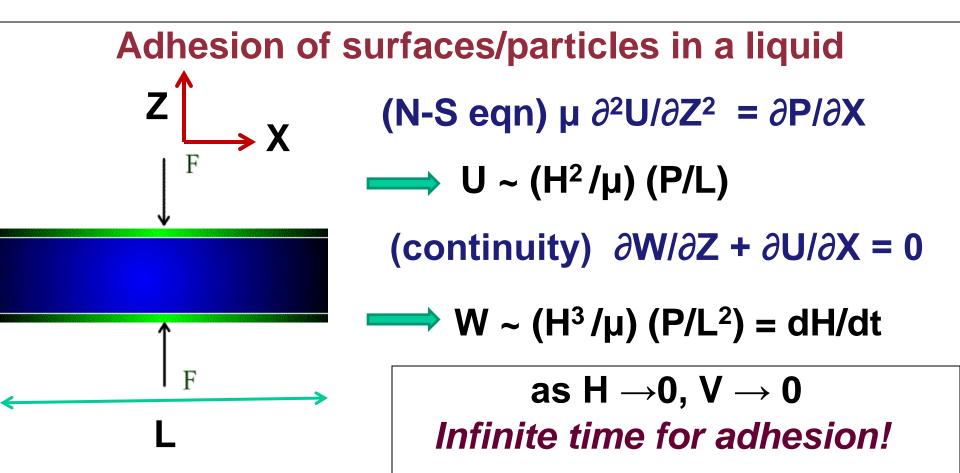
✓ Non-fouling, reusability by thin (< 1 micron) elastic skin...

Langmuir 2012; US patent applied


#### **Tunable Adhesion by Skin Thickness**



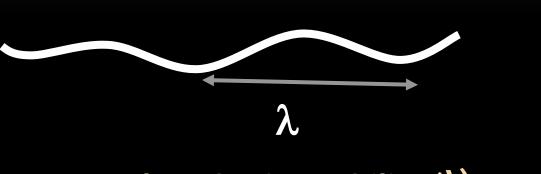
Skin Thickness: C1 (< 1% skin thickness; C2 ~ 5%; C3 ~ 8%; C4 ~ 25%)



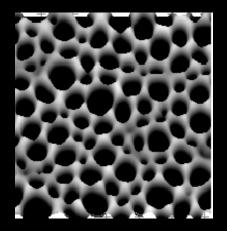

### Roll to-roll manufacturing friendly green adhesive






### Failure of Classical Mechanics in Thin Film Wetting !




But, for H < 50 nm, van der Waals force rescues!: *P (van der Waals) ~ 1/H<sup>3</sup> and thus, V ~ constant; finite lifetime An Anthropomorphic Projection?* 

## **Spinodal Dewetting in Thin Liquid Films: A Surface Force Measurement Apparatus**

 $3\mu \left(\frac{\partial H}{\partial T}\right) + \nabla \left[\gamma H^3 \nabla \nabla^2 H\right] - \nabla \left[H^3 \nabla \Phi\right] = 0$ 



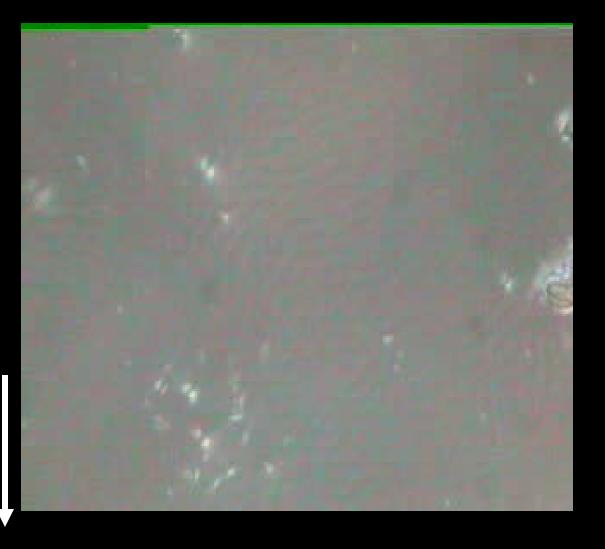
# Wavelength of Instability ( $\lambda$ ): $\lambda^2 \sim N^{-1} \sim \gamma / [\partial^2 G / \partial H^2] \sim \gamma / \phi$



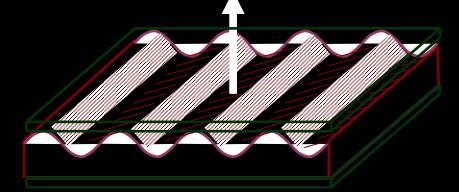
 $λ \sim H^2$  (van der Waals force)  $λ \sim H^{1.5}$  (electrostatic force)

PRL 1998, 2000, 2002

## Soft Adhesion Engenders Surface Instability and Micro-texture




## Contact Instability


**Rigid Contactor** 

# Elastic Film

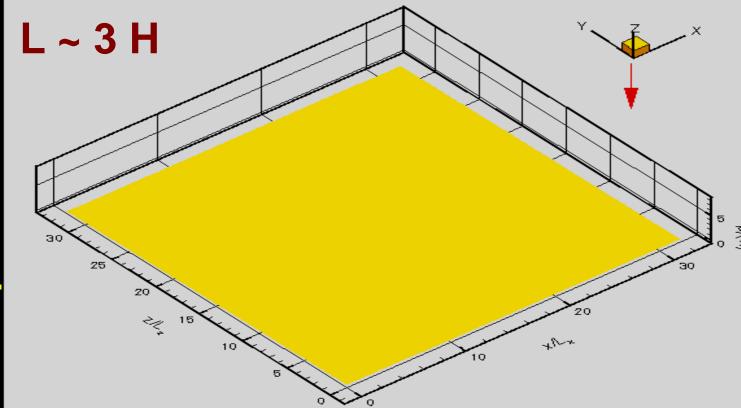
**Rigid Support** 



### PRL 2004, 2006; Adv Mat 2006



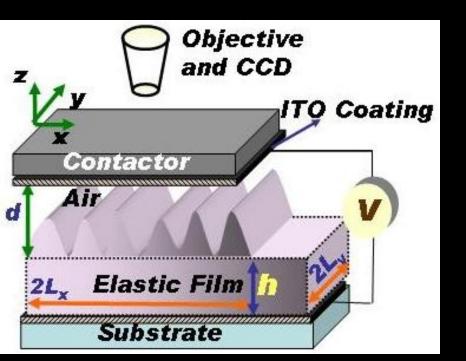
# L = wavelength

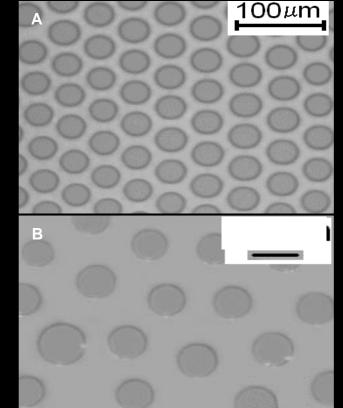

A = amplitude

Energy / area ~ Elastic Energy + Adhesive Energy =  $\mu$  H [ ( $\partial$ V/ $\partial$ X)<sup>2</sup> + ( $\partial$ U/ $\partial$ Z)<sup>2</sup> ] - A<sup>2</sup>  $\Phi_{H}$ 

- Scalings: X ~ L, Z ~ H, V ~ A, and U ~ AL/H
- Energy =  $\mu$  H A<sup>2</sup>(L<sup>2</sup> / H<sup>4</sup> + 1/L<sup>2</sup>) A<sup>2</sup>  $\Phi_{H}$
- Minimum elastic energy: *L* ~ 3*H*
- Independent of all properties !! PRL 2000, 2001

### Patterns during Approach and Retraction of a Contactor: Surface profiles by Minimization of Energy


$$\boldsymbol{\Pi} = \int_{V} \boldsymbol{W}(\boldsymbol{\varepsilon}) dV + \int_{S} \left( \gamma \sqrt{1 + (u_{2,1})^2} - U(\boldsymbol{u}.\boldsymbol{n}) \right) dS$$




Shenoy, Sharma, et al. *PRL 2001* 2004

### **Initiating Instability by Electric Field** (rather than VdW)

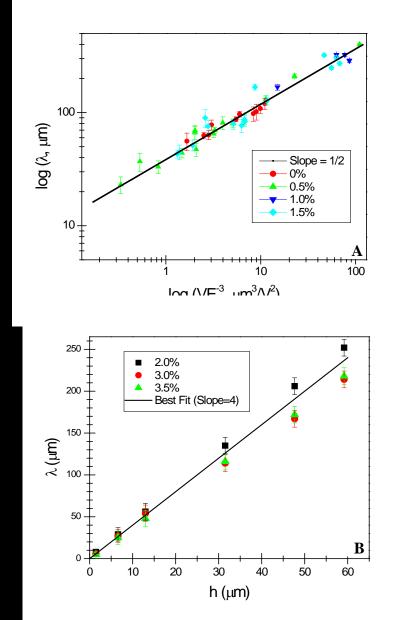
### 1.5 % visco-elastic liquid; H = 7 $\mu$ m; V = 30 V





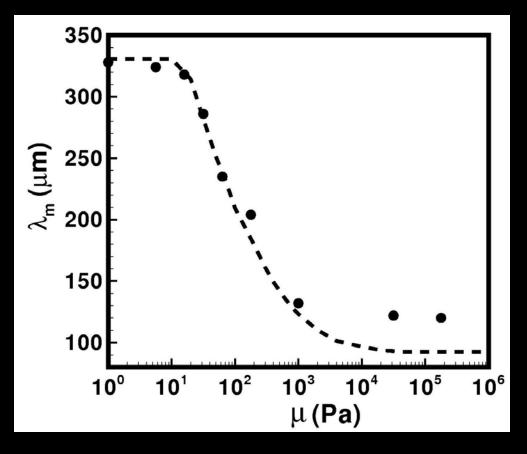
3 % visco-elastic solid; H = 70  $\mu$ m; V = 30 V

## Length scale control by Rheology


Visco-elastic LIQUID (Surface energy dominated) Cross-linker < 1.8%

$$\lambda^2 \sim \gamma / [\partial^2 G / \partial H^2] \sim \gamma / \phi$$

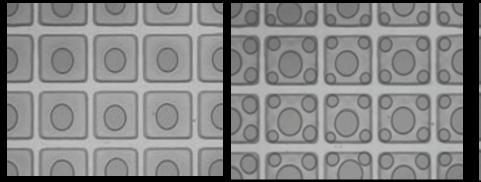
Visco-elastic SOLID (elastic energy dominated)

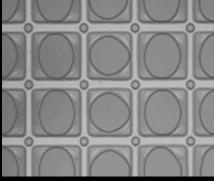

λ~ 3-4 H

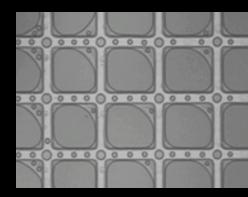
## PRL (09); Adv Mat (07)



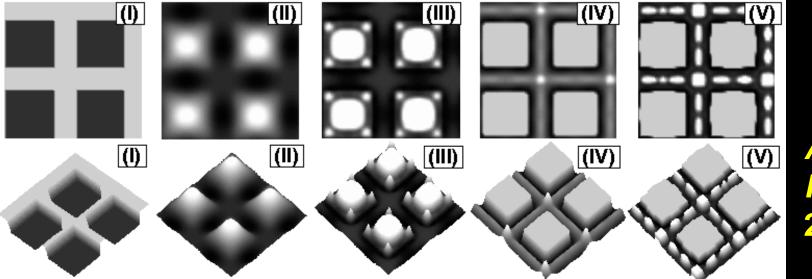
## Transition from Liquid-like to Solid-like Modes: From long to short waves


- μ is Elastic shear modulus
- γ is Surface energy



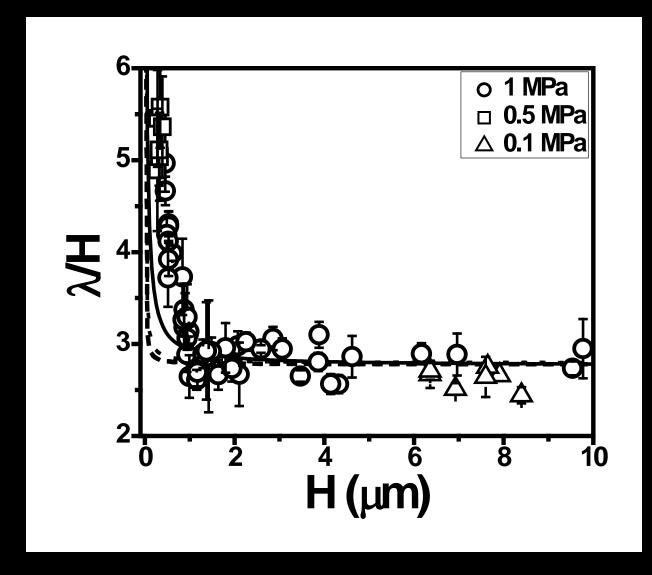


### *h*=31.5 μm, *d* = 50 μm; V = 30 V

### **PRL 2009**


### Hierarchical Structures by Rheology Control & Spatio-temporal Variation of e-Field: Pixel Electrode








30 V- 50 sec 50 V-2 min 100 V-2 min 130 V-9 min



*Adv Func Mat* 2010

## Pattern Length Scale: Role of Surface Energy



**PRL 2006**